Future of Technology, Robotics, and Automation in Agriculture

Sindhuja Sankaran Biological Systems Engineering

12 December 2023 Washington State Potato Summit

Sensing Technologies, Robotics, Automation

Plant Disease, Vol 100, No 2, pg. 241-251, 2016.

Adapted from: Gigascience, Volume 6, Issue 11, November 2017, gix092, <u>https://doi.org/10.1093/gigascience/gix092</u>

Disease Detection

- 20 Russets + 10 Chip and Specialty
- 40 days after planting
- Also relevant for potato early die/late blight detection

Sagar Sathuvalli, Oregon State University Lav Khot (WSU)

Sankaran, S., Khot, L.R., Zúñiga, C., Jarolmasjed, S., Sathuvalli, V., Vandemark, G., Miklas, P.N., Carter, A.H., Pumphrey, M.O., Knowles, N.R., and Pavek, M.J. 2015. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A Review, European Journal of Agronomy, 70: 112-123.

Growth Factors

- **Emergence and canopy closure**
- Effect of growth regulator for early/delayed maturity

UAV imagery-based potato emergence 37 days after planting (images were acquired from 15 m altitude) (a) False color multiband image (R, G, NIR as RGB bands),(b) NDVI image in grayscale, and (c) pseudocolor image for better data visualization

Sankaran, S., Quirós, J.J., Knowles, N.R., and Knowles, L.O. 2017. High resolution aerial imaging based estimation of crop emergence in potatoes. American Journal of Potato Research, DOI 10.1007/s12230-017-9604-2.

20

Hail Damage

Standard Method: Visual Rating

Hail damage levels can be assessed if imaged within 10 days of damage.

RA R1

Hail during early bulking stage most damaging.

Zhou, J., Pavek, M.J., Shelton, S.C., Holden, Z.J., and Sankaran, S. 2016. Aerial multispectral imaging for crop hail damage assessment in potato. Computer and Electronics in Agriculture, 127: 406-412.

Water-Use Efficiency

Green – NIR

Green + NIR

NDWI=

9 potato varieties

9

- 2 irrigation conditions
- 20 seeds, 4 replicates
- 45 days after planting

NDH

108	102	103	301	305	306
101	104	105	309	307	304
107	109	106	303	308	302
202	208	207	405	402	404
202 203	208 201	207 205	405 408	402 409	404

Carlos Zuniga, WSU Sanaz Jarolmasjed, WSU Rick Knowles, WSU Mark Pavek, WSU

Irrigation Scheduling/ ET Estimation: Point vs. large scale

Air temperature Camera Solar radiation -RGB camera Wind Speed -NoIR camera Reference Panel

Development of a Raspberry pi-based sensor system for automated in-field monitoring

Field Platforms

University of Arizona

Kansas State University

https://cropwatch.unl.edu/2022/sensors-pivotautomated-irrigation-scheduling-great-plains

https://www.potatogrower.com/2018/11/selecting-chemicalsthat-work-for

https://www.goodfruit.com/new-ways-to-spray/

Tuber Size/Shape

Standard Method: Caliper measurement

Accuracy range (%) = 95-100%

Yongsheng Si, WSU Rick Knowles, WSU Mark Pavek, WSU

Si, Y., Sankaran, S., Knowles, N.R., and Pavek, M. 2017. Automated potato tuber length-width ratio assessment using image analysis. American Journal of Potato Research, 94 (1): 88-93; Si, Y., Sankaran, S., Knowles, N.R., and Pavek, M. 2017. Image-based automated potato tuber shape evaluation. Journal of Food Measurement and Characterization.

Tuber Ruler

App Home Screen

Camera Access

Tuber Ruler

Allow Tuber Ruler to access
photos and media on your device?

Allow
Deny

Device Media Access

Potato Rot

- Crop losses comes from bulk storage issues (Potato Stocks, 2021): 6-7.5%, 5-6 million metric tons.
- Several crop, field, harvest and storage aspects influencing these losses.

Dr. Dennis Johnson Discussion in 2013

Biogenic Volatiles

Integrating biomarkers and crop physiology

Adapted from: Dr. Cristina Davis, UC Davis

Potato Rot Detection

- Postharvest diseases: Soft rot (potential as secondary infection), Pythium leak (tubers are vulnerable and can spread quickly)
- Cultivars: Ranger Russet and Russet Burbank
- Volatile-based early detection: FAIMS-based detection
- Early detection can allow early management[†]

Students:

Dr. Rajeev Sinha Mr. Gajanan Kothawade Mr. Worasit Sangjan Mr. Milton Valencia Ortiz

Dr. Brenda Schroeder

Dr. Lav R. Khot

Collaborators:

Dr. Mark Pavek

Mr. Austin Bates

Mr. Scott D.

Mattinson

Methods to detect storage infections

GC-MS: Expensive, time consuming, skilled labor

[†]Olsen et al., 2006, University of Idaho Extension Article CIS1131

FAIMS System

Field Asymmetric Ion Mobility Spectrometry (FAIMS) Gas detection technology "Separate and identify ions mobility of chemicals"

GC-MS:

- Golden standard
- Approved technology
- Available database
- Commonly used
- Low-throughput analysis

FAIMS:

- Easy-to-use
- Reliable
- Fingerprint detection
- Portable and flexible
 - Rapid

Working principle for FAIMS (ionization, separation & detection) Source: Owlstone Lonestar Analyzer

Compensation Voltage / V

FAIMS System

- Sensitive to small changes to volatile profile
- Can be customized to detecting specific biomarkers
- Can be integrated with air circulation system

Working principle for FAIMS (ionization, separation & detection) Source: Owlstone Lonestar Analyzer

Potato Rot Detection

FAIMS can detect soft rot and Pythium leak at 1 & 5-11 days after inoculation at 25°C & 4°C, respectively.

Postharvest Biology and Technology 135 (2018) 83-92

FAIMS based volatile fingerprinting for real-time postharvest storage infections detection in stored potatoes and onions

Rajeev Sinha^{a,c}, Lav R. Khot^{a,c,*}, Brenda K. Schroeder^b, Sindhuja Sankaran^{c,a}

^a Center for Precision and Automated Agricultural Systems, IAREC, Washington State University, Prosser, WA, 99350, USA ^b Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA ^c Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA

Postharvest Biology and Technology 181 (2021) 111679

Field asymmetric ion mobility spectrometry for pre-symptomatic rot detection in stored Ranger Russet and Russet Burbank potatoes

Gajanan S. Kothawade^{a,b}, Abhilash K. Chandel^{a,b}, Lav R. Khot^{a,b,*}, Sindhuja Sankaran^{a,b,*}, Austin A. Bates^c, Brenda K. Schroeder^c

^a Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
^b Center for Precision and Automated Agricultural Systems, Washington State University, Prosser, WA, USA

^c Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, US

Sensors 20 (2021) 7350

Feasibility of Volatile Biomarker-Based Detection of Pythium Leak in Postharvest Stored Potato Tubers Using Field Asymmetric Ion Mobility Spectrometry

Gajanan S. Kothawade^{a,b}, Sindhuja Sankaran^{a,b,*}, Austin A. Bates^c, Brenda K. Schroeder^c, Lav R. Khot^{a,b,*},

^a Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
 ^b Center for Precision and Automated Agricultural Systems, Washington State University, Prosser, WA, USA
 ^c Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, US

Next Steps

• In storage environment

Who are you going to call? Rotbusters!

😮 September 5, 2019

August 29, 2019 | Capital Press

i≣ Active poll	55 🕰
Were you aware of these technologies previous to this presentation?	
No	65%
Yes 35%	

Next Steps

• In storage environment

Dr. Brenda Schroeder

Dr. Gustavo Teixeira

WASHINGTON

Oregon POTATOES United States Department of Agriculture National Institute of Food and Agriculture

Good Land - Good People - Good Food

24

Integrated Sensor System

Potential to add temperature, humidity, and CO₂ sensors Mini-Computer

Edge/Cloud Computing: Data Processing and Transfer

Trang Mai Hoang Aidan Christopher Gooding Henry Le Kesevan Veloo

VOCs Sampling System

Schematics of the VOCs sampling system

Tedlar bag sampling and analysis

Kingsley Umani

Background VOCs in Storage

Preliminary sample collection for VOCs				
Storage type	Rate (ml/min)	Sampling point(s)		
Bulk	375	5 (3 points on the pile surface. 1 at the air inlet duct.		

and 1 at air exit from pile)

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Compensation Voltage, V

99.5·

a 90.0-

80.0-

70.0-

- 60.0-

50.0-50.0-40.0-30.0-20.0-10.0-

0.0

Outlet

Positive Mode DF Matrix

Positive Mode DF Matrix

99.5

u 90.0-

80.0-

70.0-

8 60.0−

9 50.0-40.0-

30.0-

20.0-

a 10.0-

Control

4.0

Background VOCs in Storage

Preliminary sample collection for VOCs				
Storage type	Rate (ml/min)	Sampling point(s)		
Bulk	375	5 (3 points on the pile surface, 1 at the air inlet duct,		

and 1 at air exit from pile)

Comparison of VOC profiles between sampling points in the bulk storage

Automated Bulk Storage Facility

• Automation and sensing technologies for better crop management

https://www.viastore.com/systems/en-us/warehouse-and-material-flow-solutions/cold-storage-warehouse

https://www.mecalux.com/blog/advantages-of-automated-storage-and-retrieval-systems

Summary

- Can sensing and associated technologies assist in crop improvement and precision management programs in potato?
 - ✓ **Simple** and **rapid** techniques can be valuable.
 - Important to establish cause-effect relationship by studying or understanding crop science/physiology. e.g. Potato
 - Optimizing data acquisition and establishing data processing pipelines takes time.
 - ✓ Valuable when integrated with **weather data.**
- Sensing technologies, robotics, and automation will advance with time.
 - ✓ Not necessarily for agriculture.
 - ✓ **AI/machine learning** techniques will also get better to **aid in human decisions**.

Acknowledgments

Breeders & Collaborators:

Dr. Brenda Schroeder Dr. Dennis Johnson Dr. Jake Bauer Dr. Lav Khot Dr. Mark Pavek Dr. Rick Knowles Dr. Sagar Sathuvalli Mr. Scott Mattinson Dr. Yongsheng Si

College of Agricultural, Human, & Natural Resource Sciences WASHINGTON STATE UNIVERSITY

A.

EMERGING RESEARCH ISSUES in Washington Agriculture

United States Department of Agriculture National Institute of Food and Agriculture

Thank you!!!